Degree reduction of composite Bézier curves
نویسندگان
چکیده
This paper deals with the problem of multi-degree reduction of a composite Bézier curve with the parametric continuity constraints at the endpoints of the segments. We present a novel method which is based on the idea of using constrained dual Bernstein polynomials to compute the control points of the reduced composite curve. In contrast to other methods, ours minimizes the L2-error for the whole composite curve instead of minimizing the L2-errors for each segment separately. As a result, an additional optimization is possible. Examples show that the new method gives much better results than multiple application of the degree reduction of a single Bézier curve.
منابع مشابه
Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملWeighted G-Multi-Degree Reduction of Bézier Curves
In this paper, weighted G-multi-degree reduction of Bézier curves is considered. The degree reduction of a given Bézier curve of degree n is used to write it as a Bézier curve of degree m,m < n. Exact degree reduction is not possible, and, therefore, approximation methods are used. The weight function w(t) = 2t(1 − t), t ∈ [0, 1] is used with the L2-norm in multidegree reduction with G-continui...
متن کاملConstrained approximation of rational Bézier curves based on a matrix expression of its end points continuity condition
For high order interpolations at both end points of two rational Bézier curves, we introduce the concept of C (v,u)-continuity and give a matrix expression of a necessary and sufficient condition for satisfying it. Then we propose three new algorithms, in a unified approach, for the degree reduction of Bézier curves, approximating rational Bézier curves by Bézier curves and the degree reduction...
متن کاملMatrix representation for multi-degree reduction of Be'zier curves
In this paper, we consider multi-degree reduction of Bézier curves with constraints of endpoints continuity with respect to L2 norm. The control points of the degree reduced Bézier curve can be obtained as a product of the degree reduction matrix and the vector of original control points. We find an explicit form of the multi-degree reduction matrix for Bézier curve with constraints of endpoint...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 293 شماره
صفحات -
تاریخ انتشار 2017